Répondre :

Réponse:

To find the smallest angle of the triangle given sides 8 cm, 5 cm, and an angle of 90° between them, we will use the cosine rule and basic trigonometric principles.

First, denote the sides of the triangle as follows:

- \( a = 8 \) cm (side opposite to angle A)

- \( b = 5 \) cm (side opposite to angle B)

- \( C = 90^\circ \) (angle between sides \( a \) and \( b \))

To find angle C (the right angle), the smallest angle in this case:

\[ \angle C = 90^\circ \]

To find angle A (opposite side \( a \)):

\[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \]

Calculating \( c \) using the Pythagorean theorem:

\[ c = \sqrt{a^2 + b^2} = \sqrt{8^2 + 5^2} = \sqrt{64 + 25} = \sqrt{89} \]

Now, substitute the values into the cosine rule:

\[ \cos A = \frac{5^2 + (\sqrt{89})^2 - 8^2}{2 \cdot 5 \cdot \sqrt{89}} \]

\[ \cos A = \frac{25 + 89 - 64}{2 \cdot 5 \cdot \sqrt{89}} \]

\[ \cos A = \frac{50}{10 \cdot \sqrt{89}} \]

\[ \cos A = \frac{5}{\sqrt{89}} \]

Calculate \( \cos A \):

\[ \cos A \approx 0.532 \]

Now, find angle A:

\[ \angle A = \cos^{-1}(0.532) \]

\[ \angle A \approx 58.5^\circ \]

Finally, to determine the smallest angle of the triangle:

\[ \text{Smallest angle} = \angle C = 90^\circ \]

Therefore, the smallest angle of the triangle is \( \boxed{90^\circ} \).

D'autres questions